Sains Malaysiana 54(1)(2025):
165-174
http://doi.org/10.17576/jsm-2025-5401-13
A Review on Fish Oil Extraction from Fish by-Product as Sustainable Practices and Resource Utilization in the Fish Processing
Industry
(Tinjauan Mengenai Pengekstrakan Minyak Ikan daripada Produk Sampingan Ikan sebagai Amalan Mampan dan Penggunaan Sumber dalam Industri Pemprosesan Ikan)
Muhamad Nor Iqmal Bin Mamat1, Hafeedza Abdul Rahman1,2, Noorul Syuhada Mohd Razali1,2, Sharifah Salmah Syed Hussain3, Khairul Farihan Kasim4 & Noor-Soffalina Sofian-Seng1,2,*
1Department of Food Sciences, Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
2Innovation Centre for Confectionery Technology (MANIS), Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Malaysia
3Department of Veterinary
Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
4Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP),
02600 Arau, Perlis, Malaysia
Diserahkan: 12 Ogos 2024/Diterima: 2 September 2024
Abstract
The fish
processing industry generates significant by-products, such as viscera, skin,
bones, and heads, which are valuable for producing food, medicinal products,
energy, and industrial feedstock. Fish oil, rich in omega-3 polyunsaturated
fatty acids like eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), is
widely used in nutritional supplements and other applications. Among these
by-products, fish viscera contain the highest concentration of oil, making them
an ideal target for extraction due to their cost-effectiveness and
environmental benefits. Extracting oil from fish by-product helps reduce
environmental pollution and promotes sustainable practices by fully utilizing
fish resources. This holistic approach contributes to waste reduction and
resource efficiency in the fish processing industry. By incorporating
sustainable principles into extraction processes - such as using
environmentally friendly solvents, implementing efficient solvent recovery
systems, and ensuring compliance with environmental regulations - companies can
enhance the sustainability of their operations while extracting valuable
components. As demand for fish-based food products rises, effective extraction
of fish oil and fishmeal from by-products becomes increasingly important.
Various extraction methods, including physical, chemical, and biological
approaches, are essential for separating solids, oil, and water to recover
valuable components like EPA and DHA. Optimizing these processes and combining
different methods can achieve high concentrations of polyunsaturated fatty
acids (PUFAs) in fish oil, ranging from 65% to 80%. Emphasizing maximum PUFA
content highlights the potential to enhance the quality and nutritional value
of fish oil extracted from by-products while advancing sustainability in the fish
processing industry.
Keywords:
Circular economy; extraction; fish by-products; fish oil; viscera
Abstrak
Industri pemprosesan ikan menghasilkan banyak hasil sampingan seperti visera, kulit, tulang dan kepala yang bernilai untuk pengeluaran makanan, produk perubatan, tenaga dan bahan mentah industri. Minyak ikan, kaya dengan asid lemak tak tepu omega-3 seperti asid eicosapentaenoic
(EPA) dan asid dokosaheksaenoik (DHA) banyak digunakan dalam makanan tambahan nutrisi dan aplikasi lain. Antara hasil sampingan ini, visera ikan mengandungi kepekatan minyak tertinggi, menjadikannya sasaran utama untuk pengekstrakan kerana kos yang berkesan dan manfaat persekitarannya. Pengekstrakan minyak daripada hasil sampingan ikan membantu mengurangkan pencemaran alam sekitar dan mempromosikan amalan mampan dengan memanfaatkan sepenuhnya sumber ikan. Pendekatan holistik ini menyumbang kepada pengurangan sisa dan kecekapan sumber dalam industri pemprosesan ikan. Dengan menggabungkan prinsip mampan dalam proses pengekstrakan seperti menggunakan pelarut mesra alam, melaksanakan sistem pemulihan pelarut yang cekap dan memastikan pematuhan terhadap peraturan alam sekitar, syarikat boleh meningkatkan kemampanan operasi mereka sambil mengekstrak komponen yang bernilai. Apabila permintaan terhadap produk makanan berasaskan ikan meningkat, pengekstrakan minyak ikan dan tepung ikan yang berkesan daripada hasil sampingan menjadi semakin penting. Pelbagai kaedah pengekstrakan, termasuk pendekatan fizikal, kimia dan biologi, adalah penting untuk memisahkan pepejal, minyak dan air bagi memulihkan komponen berharga seperti EPA dan DHA. Mengoptimumkan proses ini dan menggabungkan kaedah yang berbeza boleh mencapai kepekatan tinggi asid lemak tak tepu (PUFA) dalam minyak ikan, antara 65% hingga 80%. Menekankan kandungan PUFA maksimum menunjukkan potensi untuk meningkatkan kualiti dan nilai pemakanan minyak ikan yang diekstrak daripada hasil sampingan sambil memajukan kemampanan dalam industri pemprosesan ikan.
Kata kunci: Ekonomi membulat; minyak ikan; pengekstrakan; produk sampingan ikan; visera
RUJUKAN
Afreen, M. & Ucak,
I. 2020. Fish processing wastes used as feed ingredient for animal feed and
aquaculture feed. Journal of Survey in Fisheries Sciences 6(2): 55-64.
Aitta, E., Marsol-Vall,
A., Damerau, A. & Yang, B. 2021. Enzyme-assisted
extraction of fish oil from whole fish and by-products of Baltic herring (Clupea harengus membras). Foods 10(8): 1811.
Arab-Tehrany, E., Jacquot, M., Gaiani, C.,
Imran, M., Desobry, S. & Linder, M. 2012. Beneficial
effects and oxidative stability of omega-3 long-chain polyunsaturated fatty
acids. Trends in Food Science & Technology 25(1): 24-33.
Alfio, V.G., Manzo, C. & Micillo,
R. 2021. From fish waste to value: An overview of the sustainable recovery of
omega-3 for food supplements. Molecules 26(4): 1002.
Al-Hilphy, A. R.,
Al-Mtury, A. A. A., Al-Shatty,
S. M., Hussain, Q. N. & Gavahian, M. 2022. Ohmic
heating as a by-product valorization platform to
extract oil from Carp (Cyprinus carpio)
viscera. Food and Bioprocess Technology 15(11): 2515-2530.
Arias, L., Marquez, D. M. & Zapata, J.
E. 2022. Quality of red tilapia viscera oil (Oreochromis sp.) as a function of
extraction methods. Heliyon 8(5).
Araujo, J., Sica,
P., Costa, C. & Márquez, M.C. 2021. Enzymatic hydrolysis of fish waste as
an alternative to produce high value-added products. Waste and Biomass Valorization 12: 847-855.
Bashiri, B., Cropotova,
J., Kvangarsnes, K., Gavrilova, O. & Vilu, R. 2024. Environmental and economic life cycle
assessment of enzymatic hydrolysis-based fish protein and oil extraction. Resources 13(5): 61.
Bezerra, R.A. & Fonseca, G.G. 2023. Microbial
count, chemical composition and fatty acid profile of biological silage
obtained from pacu and spotted sorubim fish waste using lactic acid bacteria fermentation. Biocatalysis and Agricultural Biotechnology 54: 102929.
Borges, S., Odila,
J., Voss, G., Martins, R., Rosa, A., Couto, J.A., Almeida, A. & Pintado, M.
2023. Fish by-products: A source of enzymes to generate circular bioactive
hydrolysates. Molecules 28(3): 1155.
Caruso, G., Floris, R., Serangeli,
C. & Di Paola, L. 2020. Fishery wastes as a yet undiscovered treasure from
the sea: Biomolecules sources, extraction methods and valorization. Marine Drugs 18(12): 622.
Carvalho, A.P., Moreira, M.M., Delerue-Matos, C., Gomes, A.M., Freitas, A.C. & Grosso
C. 2019. Valorization of lipid by-products. In Lipids
and Edible Oils, Ed by Galanakis C.M. Elsevier Academic
Press (London), pp. 133-174.
Chemat, F., Abert Vian, M., Ravi, H. K., Khadhraoui,
B., Hilali, S., Perino, S., & Fabiano Tixier, A. S. 2019. Review of alternative solvents for
green extraction of food and natural products: Panorama, principles, applications
and prospects. Molecules 24(16): 3007.
Chen, W., Liu, Y., Song, L., Sommerfeld, M.
& Hu, Q. 2020. Automated accelerated solvent extraction method for total
lipid analysis of microalgae. Algal Research51: 102080.
Chozhavendhan, S., Vijay Pradhap Singh, M., Fransila, B., Praven Kumar, R. & Karthiga Devi, G. 2020. A review on
influencing parameters of biodiesel production and purification processes. Current
Research in Green and Sustainable Chemistry 1(2): 1-6.
Dave, J., Ali, A.M.M., Kumar, N., Nagarajan,
M., Kieliszek, M. & Bavisetty,
S.C.B. 2024. Investigating the impact of wet rendering (solventless method) on PUFA-rich oil from catfish (Clarias magur) viscera. Open Life Sciences 19(1):
20220903.
Djamaludin, H., Sulistiyati,
T.D., Chamidah, A., Nurashikin,
P., Roifah, M., Notonegoro,
H. & Ferdian, P.R. 2023. Quality and fatty acid
profiles of fish oil from tuna by-products extracted using a dry-rendering
method. Biodiversitas Journal of Biological
Diversity 24(11): 6100-6106.
Franklin, E.C., Haq,
M., Roy, V.C., Park, J.S. & Chun, B.S. 2020. Supercritical CO2 extraction and quality comparison of lipids from Yellowtail fish (Seriola quinqueradiata)
waste in different conditions. Journal of Food Processing and Preservation44(11): e14892.
Garofalo, S.F., Cavallini,
N., Demichelis, F., Mancini, S.G., Fino, D. & Tommasi, T. 2023.
From tuna viscera to added-value products: A circular approach for fish-waste
recovery by green enzymatic hydrolysis. Food and Bioproducts Processing 137: 155-167.
Hashim, N.A., Mazilan,
M.S.R., Man, R.C., Arshad, Z.M. & Mudalip, S.K.
2022. Recovery of omega-3 fish oil from Monopterus albus using microwave assisted extraction
process. In AIP Conference Proceedings 2610: 060015.
Hossain, K.Z. 2022. Oil quality of
by-products of marine fish during processing methods. Journal of Aquaculture
& Marine Biology 11(3): 135-137.
Hrebień‐Filisińska, A. 2021. Application of natural
antioxidants in the oxidative stabilization of fish oils: A mini‐review. Journal
of Food Processing and Preservation 45(4): e15342.
Jamalluddin, N.A., Ismail, N., Mutalib,
S.R.A. & Sikin, A.M. 2022. SC-CO2 extraction
of fish and fish by-products in the production of fish oil and enzyme. Bioresources
and Bioprocessing9:
21.
Jamshidi, A., Cao, H., Xiao, J. & Simal-Gandara, J. 2020. Advantages of techniques to fortify
food products with the benefits of fish oil. Food Research International 137: 109353.
Iberahim, N. I., & Tan, B. C. 2020.
Hexane-isopropanol extraction and quality assessment of omega-3 fish oil from
Atlantic salmon (Salmo salar). In IOP
Conference Series: Materials Science and Engineering (Vol. 932, No. 1, p.
012038). IOP Publishing.
Isa, N., Sofian-Seng, N.S. & Wan
Mustapha, W.A. 2021. Supercritical fluid extraction of lipid from mango (Mangifera indica L.) seed waste and comparison of its physicochemical characteristics with cocoa
butter (Theobroma cacao L.). Sains Malaysiana 50(7): 1901-1911.
Keskin Çavdar, H., Bilgin, H., Fadıloğlu,
S. & Yılmaz, F.M. 2023. Ultrasound‐and
microwave‐assisted extractions facilitate oil recovery from Gilthead
Seabream (Sparus aurata) by‐products and
enhance fish oil quality parameters. European Journal of Lipid Science and
Technology125(3):
2200089.
Kratky, L. & Zamazal, P. 2020. Economic feasibility and sensitivity
analysis of fish waste processing
biorefinery. Journal of Cleaner Production 243: 118677.
Liu, Y., & Dave, D. 2022. Beyond
processing waste: Extraction of oil from Atlantic salmon (Salmo salar) by-products using immobilized Alcalase on chitosan-coated magnetic nanoparticles. Aquaculture 548: 737546.
Liu, Y., Ramakrishnan, V. V., & Dave,
D. 2021. Enzymatic hydrolysis of farmed Atlantic salmon by-products:
Investigation of operational parameters on extracted oil yield and quality. Process
Biochemistry 100: 10-19.
Marsol-Vall, A., Aitta, E.,
Guo, Z. & Yang, B. 2022. Green technologies for production of oils rich in
n-3 polyunsaturated fatty acids from aquatic sources. Critical Reviews in
Food Science and Nutrition 62(11): 2942-2962.
Mgbechidinma, C.L., Zheng, G., Baguya,
E.B., Zhou, H., Okon, S.U. & Zhang, C. 2023.
Fatty acid composition and nutritional analysis of waste crude fish oil
obtained by optimized milder extraction methods. Environmental Engineering
Research 28(2). https://doi.org/10.4491/eer.2022.034
Meidell, L.S., Slizyte,
R., Mozuraityte, R., Carvajal, A.K., Rustad, T., Standal, I.B., Kopczyk, M. & Falch, E. 2023.
Silage for upcycling oil from saithe (Pollachius virens) viscera - Effect of raw material freshness
on the oil quality. Heliyon 9(6): e16972.
Melgosa, R., Sanz, M.T. & Beltrán,
S. 2021. Supercritical CO2 processing of omega-3 polyunsaturated
fatty acids - Towards a biorefinery for fish waste valorization. The Journal of Supercritical Fluids 169: 105121.
Mokhtar, N., Abdul Rahman, H.,
Sofian‐Seng, N.S., Lim, S.J., Wan Mustapha, W.A., Abdul Hamid, A., Mohd Razali, N.S. & Mohamed Nazir, M.Y. 2024.
Comparative analysis of process intensification technologies (PIT) for improved
cell disruption and lipid recovery in Aurantiochytrium sp. SW1 microalgae. International Journal of Food Science & Technology 59(10): 7827-7836.
Mota, F. A., Costa Filho, J. T., & Barreto,
G. A. 2019. The Nile tilapia viscera oil extraction for biodiesel production in
Brazil: An economic analysis. Renewable and Sustainable Energy Reviews 108: 1-10.
Mokhtar, N., Chang, L.S., Soon, Y.,
Mustapha, W.A.W., Sofian-Seng, N.S., Rahman, H.A., Mohd Razali, N.S., Shuib, S., Hamid, A.A. & Lim, S.J.
2021. Harvesting Aurantiochytrium sp. SW1 using
organic flocculants and characteristics of the extracted oil. Algal Research 54: 102211.
Morales, A.H., Pisa, J.H., Gómez, M.I.,
Romero, C.M., Vittone, M., Massa, A.E. & Lamas,
D.L. 2024. Comparative oil extraction from mutt (Myliobatis goodei) liver by enzymatic hydrolysis: free
versus immobilized biocatalyst. Journal of the Science of Food and
Agriculture 104(4): 2493-2501.
Mutalipassi, M., Esposito, R., Ruocco,
N., Viel, T., Costantini,
M., & Zupo, V. 2021. Bioactive compounds of
nutraceutical value from fishery and aquaculture discards. Foods 10(7):
1495.
Nazir, N., Diana, A. & Sayuti, K. 2017. Physicochemical and fatty acid profile of
fish oil from head of tuna (Thunnus albacares) extracted from various extraction method. International
Journal on Advanced Science, Engineering and Information Technology 7(2):
709-715.
Ozogul, F., Cagalj, M., Šimat, V., Ozogul, Y., Tkaczewska, J.,
Hassoun, A., Kadour, A.A., Kuley,
E., Rathod, N.B. & Phadke, G.G. 2021. Recent
developments in valorisation of bioactive ingredients in discard/seafood
processing by-products. Trends in Food Science & Technology 116:
559-582.
Özyurt, G., Özkütük, A.S., Uçar, Y., Durmuş, M. & Ozogul,
Y. 2019. Evaluation of the potential use of discard species for fish silage and
assessment of its oils for human consumption. International Journal of Food
Science & Technology 54(4): 1081-1088.
Pinela, J., Fuente, B.D.L., Rodrigues, M., Pires,
T.C., Mandim, F., Almeida, A., Dias, M.N., Calejam, C. & Barros, L. 2022. Upcycling fish
by-products into bioactive fish oil: The suitability of microwave-assisted
extraction. Biomolecules 13(1): 1.
Pudtikajorn, K. & Benjakul,
S. 2020. Simple wet rendering method for extraction of prime quality oil from
skipjack tuna eyeballs. European Journal of Lipid Science and Technology 122(8): 2000077.
Purnamayati, L., Dito, B.S., Dewi, E.N. & Suharto, S. 2023. Optimization of
tilapia (Oreochromis niloticus) viscera oil
extraction using response surface methodology. Food Research 7(3):
12-20.
Putri, A.R., Setyaningsih,
W., Carrera Fernández, C.A., Palma Lovillo, M., Rohman, A. & Riyanto, S.
2023. Optimization of microwave-assisted fish oil extraction from Patin (Pangasius micronemus)
using Response Surface Methodology-Box Behnken Design (RSM-BBD). Pharmaceutical
Sciences Asia 50(3): 229-237.
Raeesi, R., Shabanpour,
B. & Pourashouri, P. 2021. Quality evaluation of
produced silage and extracted oil from rainbow trout (Oncorhynchus mykiss)
wastes using acidic and fermentation methods. Waste and Biomass Valorization 12: 4931-4942.
Rishitha, M., Gude, J.
& Rao DM. Extraction and characterization of fish oil from Channa straita waste collected from Anantapuram fish market. Journal of
Natural Remedies. 21(8):228-40
Sahena, F., Zaidul, I.
S. M., Jinap, S., Yazid, A. M., Khatib, A., & Norulaini, N. A. N. 2010. Fatty acid compositions of fish
oil extracted from different parts of Indian mackerel (Rastrelliger kanagurta) using various techniques of
supercritical CO2 extraction. Food Chemistry 120(3): 879-885.
Sajib, M., Trigo,
J.P., Abdollahi, M. & Undeland,
I. 2022. Pilot-scale ensilaging of herring filleting co-products and subsequent
separation of fish oil and protein hydrolysates. Food and Bioprocess
Technology 15(10): 2267-2281.
Saleh, N.E., Wassef, E.A. &
Abdel-Mohsen, H.H. 2022. Sustainable fish and seafood production and
processing. In Sustainable Fish Production and Processing, edited by Galanakis, C.M. Massachusetts: Academic Press. pp. 259-291.
Salih, A.W., Najim,
S.M. & Al-Noor, J.M. 2021. Some physical, chemical and sensory properties
of fish oil extracted from fish wastes by physical and chemical methods. Biological
and Applied Environmental Research 5(1): 152-162.
Sivaranjani, S., Puja, N., Rout, R.K., Joshi, T.J.,
Singh, S.M., Indumathi, M. & Kumar, T.D. 2024.
Strategies to recover protein and lipids from fish processing by-products. In Fish Waste to Valuable Products, edited by Maqsood, S., Naseer, M.N., Benjakul, S. & Zaidi, A.A. Singapore: Springer Nature.
Suseno, S.H., Rizkon,
A.K., Jacoeb, A.M. & Listiana,
D. 2021. Fish oil extraction as a by-product of Tilapia (Oreochromis sp.)
fish processing with dry rendering method. IOP Conference Series: Earth and
Environmental Science 679: 012009.
Thirukumaran, R., Priya, V.K.A., Krishnamoorthy, S.,
Ramakrishnan, P., Moses, J.A. & Anandharamakrishnan,
C. 2022. Resource recovery from fish waste: Prospects and the usage of
intensified extraction technologies. Chemosphere 299: 134361.
Tu, Z.C., Huang, T., Wang, H., Sha, X.M.,
Shi, Y., Huang, X.Q., Man, Z.Z. & Li, D.J., 2015. Physico-chemical
properties of gelatin from bighead carp (Hypophthalmichthys nobilis)
scales by ultrasound-assisted extraction. Journal of Food Science and
Technology 52: 2166-2174.
van’t Land, M., Vanderperren,
E. & Raes, K. 2017. The effect of raw material
combination on the nutritional composition and stability of four types of
autolyzed fish silage. Animal Feed Science and Technology 234: 284-294.
Vázquez, J.A., Fraguas,
J., Mirón, J., Valcárcel,
J., Pérez-Martín, R.I. & Antelo, L.T. 2020a.
Valorisation of fish discards assisted by enzymatic hydrolysis and microbial
bioconversion: Lab and pilot plant studies and preliminary sustainability
evaluation. Journal of Cleaner Production 246: 119027.
Vázquez, J.A., Rodríguez-Amado, I., Sotelo,
C.G., Sanz, N., Pérez-Martín, R.I. & Valcárcel,
J. 2020b. Production, characterization, and bioactivity of fish protein
hydrolysates from aquaculture turbot (Scophthalmus maximus) wastes. Biomolecules 10(2): 310.
Wan-Mohtar,
W.A.A.Q.I., Khalid, N.I., Rahim, M.H.A., Luthfi,
A.A.I., Zaini, N.S.M., Din, N.A.S. & Mohd Zaini, N.A. 2023.
Underutilized Malaysian agro-industrial wastes as
sustainable carbon sources for lactic acid production. Fermentation 9(10): 905.
Wang, M., Zhou, J., Collado,
M.C. & Barba, F.J. 2021. Accelerated solvent extraction and pulsed electric
fields for valorization of rainbow trout (Oncorhynchus
mykiss) and sole (Dover sole) by-products: Protein content,
molecular weight distribution and antioxidant potential of the extracts. Marine
Drugs 19(4): 207.
Zhang, Y., Sun, Q., Liu, S., Wei, S., Xia,
Q., Ji, H., Deng, C. & Hao, J. 2021. Extraction of fish oil from fish heads
using ultra-high pressure pre-treatment prior to
enzymatic hydrolysis. Innovative Food Science & Emerging Technologies 70: 102670.
Zubairi, S.I., Shy-Yi, W.N., Kasim, Z.M. & Nurzahim, Z. 2021. Physico-chemical
characteristics and quality evaluation of Malaysia haruan (Channa striatus)
and toman (Channa micropeltes) fish oil: Preliminary quality
analysis prior to therapeutic consumption. Oriental Journal of Chemistry 37(3): 619.
*Pengarang untuk surat-menyurat;
email: soffalina@ukm.edu.my
|